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Various mathematical models have been developed to describe the interactions
of mosquito vectors, vertebrate hosts, and malarial parasites. Of particular inter-
est is the identification of factors that enable the stable persistence of the parasite
in the host population and that determine the trajectories and equilibrium levels of
infection in the hosts and vectors. These models generally assume that mos-
quitoes choose and feed on hosts irrespective of the absence or presence of
infection in the hosts (for a review, see Aron and May 1982).

In fact, several recent lines of evidence suggest that mosquitoes do not feed
randomly with respect to host infection. Nonrandom feeding may be expressed at
three different stages: attraction and penetration, probing and the location of
" blood, and blood intake (Edman et al. 1985). In paired-choice laboratory experi-
ments, mosquitoes preferentially fed on malaria-infected rather than control (un-
infected) mice; this preference was strongest when the gametocytic form of the
parasite (the infective stage for the mosquito vector) was most prevalent (Day and
Edman 1983; Day et al. 1983). A related study (Mahon and Gibbs 1982) with hens
infected with arbovirus shows that mosquitoes preferentially bit infected rather
than control hens and were preferentially attracted to infected hens even in
situations where they were prevented from actual biting (see also Turell et al.
1984). Similarly, lambs infected with Rift Valley fever virus were fed on more
frequently by mosquitoes than were uninfected lambs; and the frequency of
mosquito bites was positively correlated with the body temperature of infected
lambs (Turell et al. 1985).

Other evidence indicates that parasitic infections in hosts can affect blood
location and blood intake. For example, the mean duration of probing (blood
location) for Aedes aegypti mosquitoes feeding on mice was reduced by at least 1
min when the mosquitoes fed on malaria-infected or arbovirus-infected mice
rather than uninfected mice (Rossignol et al. 1985). Similar results have also been
reported for trypanosomiasis and tsetse flies (Jenni et al. 1980; but see Moloo and
Dar 1985). In addition, a theoretical analysis of optimal feeding behavior and the
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mechanics of blood sucking indicates that mosquitoes may maximize their rates of
protein intake during feeding by choosing human hosts with blood hematocrits of
0.3, a level commonly found in malaria-infected hosts (Daniel and Kingsolver
1983, MS; but see Kesavan and Reddy 1985). All these results suggest that
mosquitoes may preferentially choose hosts on the basis of host infection. Such
behavior could in turn affect the patterns of malarial transmission. Effects of
vector behavior (see, e.g., Ribeiro et al. 1984; Rossignol et al. 1984, 1986; Moly-
neux and Jeffries 1986) and of host infection on host behavior (reviewed in
Dobson 1988) have also been reported but are not considered here.

The purpose of the present study is to develop and analyze a simple model for
the dynamics of malarial transmission that incorporates nonrandom feeding be-
havior by the mosquito vector. The results show that such behaviors can quantita-
tively and qualitatively alter the conditions for the existence, stability, and levels
of infection at equilibrium; the results also suggest that such feeding behavior
must be studied in greater detail if we are to understand the dynamics of malarial
infection.

THE MODEL

General Formulation

The model is a straightforward extension of the Ross-Macdonald (here called
R-M) model for the dynamics of malarial infection (Ross 1911; Macdonald 1952,
1957, 1973). The principal variables of interest are the infected proportions of the
human host populations (x) and of the mosquito vector population (y). The basic
model may be written as a coupled pair of ordinary differential equations describ-
ing the time course of x and y:

dx/dt = kyB,(x)M/IN — rx, 6))
dyldt = Bi(x)(1 —y) — py, )

where N is the size of the human population; M is the size of the female mosquito
population; m = M/N is the number of female mosquitoes per human host; & is the
proportion of infected bites on human hosts that produce an infection; B;(x) and
Bu(x) are functions describing the rates of biting per female mosquito on infected
and uninfected hosts, respectively; r is the per capita rate of recovery for human
hosts; and p is the per capita mortality rate for mosquitoes.

Aron and May (1982) have discussed the many limitations of this simple model,
including constant human and mosquito population size and mortality rate; the
lack of a distinction between different developmental stages of the parasite; and
the lack of induced immunity or host mortality. Nevertheless, the model has
proved useful in describing the important aspects of the transmission process.

In the R-M model, the biting-rate functions take a simple form:

Bi(x) = Bx , 3)
Bux) = B(1 — x), )
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where B is the total rate of biting per unit of time [B = Bj(x) + Bu(x)]. In this
formulation, bites are distributed between infected and uninfected hosts according
to their relative abundances; that is, mosquitoes are assumed to choose hosts at
random.

One principal result from analysis of the R-M model is the identification of a
parameter (R) that governs the model’s behavior. Thus, when

R = kmB?*/pr > 1, &)

an infection will persist and lead to a stable equilibrium at which an infection is
maintained in both the host and vector populations. Conversely, if R < 1, any
infection will die out, and the uninfected equilibrium point (£ = 0, y = 0) is stable.
R, often called the net reproductive (or net replacement) rate of the parasite,
occurs in many epidemiological models (Bailey 1982; Levin et al. 1982).

My purpose is to introduce biting-rate functions, B;(x) and B,(x), that describe
nonrandom host choice by the mosquito with respect to host infections and to
examine the consequences of such behaviors for the dynamics of infection. By
‘“‘nonrandom’’ I mean any aspect of the vector’s behavioral interaction with the
host or environment that produces a biting-rate function not described by equa-
tions (3) and (4). I consider three types of nonrandom host choice: (1) a consistent
preference for infected hosts at all levels of host infection; (2) a switching behavior
in which the preference depends on the relative abundance of infected and
uninfected hosts; and (3) an increasing preference for the host as the level of host
infection increases. To allow direct comparison with the R-M model, I assume in
each case that the total biting rate on hosts is a constant B. This assumption
implies that the host density is sufficiently large for both infected and uninfected
host types to be readily available to a searching mosquito. In the analysis that
follows, it is assumed that 0 = x = 1, 0 = y < 1, and all model parameters are
positive.

Consistent Host-Preference Model
A simple function that describes a consistent preference for infected hosts is

Bix) = B(1 — e™), (6
Bu(x) = B — Bi(x) = Be™ ", M

where c is a positive constant that reflects the intensity of the preference: increas-
ing ¢ increases the biting rate on infected hosts at all values of x (fig. 1). The
parameter ¢ must be chosen such that B;(x) approaches B as x approaches 1.
Equations (6) and (7) have the drawback that B;(x) approaches B only asymptotic-
ally, such that Bi(1) = B only when ¢ = = (but see eqgs. 13, 14). However, this
does not affect the qualitative behavior of the resulting model except when an
equilibrium point lies very near x = 1.
The system of equations (1) and (2) can then be written

dx/dt = Bkmye™“* — rx , ®
dyldt = B(1 — e™)(1 —y) — ny. )
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Fic. 1.—The biting-rate function on infected hosts [B;(x), standardized to a total biting rate
B = 1] as a function of the infected proportion of the host population (x), for the consistent-
preference model for several different values of preference, ¢. The biting function for random
host choice is also given.

Consider the y null-cline, along which dy/dt = 0, and the x null-cline, along which
dx/dt = 0. The x null-cline is given by

Hx) = _Wl%_w =Y, (10

and the y null-cline is given by

B(l1 —e ) _ y. 1)

fy(x) = " + B(l _ e—CX) -

The following results apply.

1. Both f(x) and f,(x) are nonnegative, increasing functions of x.

2. fi(x) is convex (d’[f,)/dx* > 0), whereas f,(x) is concave (d*[fy}/dx* < 0).

3. The point (£ = 0, y = 0) is always an equilibrium point (here termed the
zero, or uninfected, equilibrium).

4. Given results 1-3 above, the condition for a second, nonzero equilibrium is
given by

R, = ckmB?*ur > 1. (12)

This is easily obtained by considering the initial slopes of the two null-clines (see
Aron and May 1982).

5. Local-stability analysis (see the Appendix) shows that the uninfected equi-
librium (0, 0) is locally stable if and only if R; < 1. Thus, the uninfected equilib-
rium is stable when it is the only equilibrium point and unstable when a second,
nonzero equilibrium exists.

6. Phase-plane analysis shows that the nonzero equilibrium is globally stable
when it exists (fig. 2).

These qualitative features of equilibrium and stability for the preference model
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F1G. 2.—Phase-plane plot of the infected proportion of the vector population (y, vertical
axis) and the host population (x, horizontal axis) for the consistent-preference model. Solid
line, x null-cline (x = 0); dashed line, y null-cline (y = 0). The nonzero equilibrium point is
circled. Arrows, Vectors indicating the direction of change in the phase plane; all trajectories
lead to the nonzero equilibrium. Parameter values: B = 10, km/r = 1, p. = 10, ¢ = 5.

0.125

(y)

0.100 +

0075

VECTORS

0.050 C=5~

T
\

0.025 - ===

INFECTED

_-_-_——_-——_l_ " 1 . 1 .
0.08 0.12 0.16 0.20
INFECTED HOSTS (x)

0.000
000

FiG. 3.—Phase-plane plot as in figure 2. The x null-clines (x = 0, solid lines) and y null-
clines (y = 0, dashed lines) are given for several different values of preference, c, and for the
random-choice model. For the random-choice model, there is no nonzero equilibrium; as
preference increases, a stable nonzero (infected) equilibrium point appears (circled). Parame-
ter values: B = 10, km/r = 0.5, p. = 100.

are similar to those of the original R-M model. One important difference is in the
conditions for the existence of the stable infection in the host and vector popula-
tions (eqs. 5, 12). The condition R; for stable infection for the host-preference
model is simply R; = ¢R, where R is the equivalent condition for stable infection
for the random-biting (R-M) model. Thus, increasing preference for infected hosts
increases the ability to allow a stable equilibrium infection. This is illustrated in
figure 3. Here, under random biting there is no nonzero equilibrium; as host
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FiG. 4.—Phase-plane plot as in figure 2. The x null-clines (x = 0, solid lines) and y null-
clines (y = 0, dashed lines) are given for several different values of preference, c, and for the
random-choice model. The nonzero equilibrium in each case is circled. As preference in-
creases, the equilibrium level of infection in the host population decreases. Parameter values:
B = 10, km/r = 1, p. = 10.
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Fic. 5.—Phase-plane plot as in figure 2. The x null-clines (x = 0, solid lines) and y null-
clines (y = 0, dashed lines) are given for several different values of total biting rate, B. The
nonzero equilibrium point for each case is circled. As biting rate increases, the equilibrium
levels of infection in the host and vector populations increase. Parameter values: km/r = 1, w
=1,c =5.

preference (c) increases, a stable nonzero equilibrium point appears, and the
equilibrium values of infection in the host and vector populations increase.

The equilibrium level of infection in the vector population always increases as
preference increases (figs. 3, 4). However, the equilibrium infection level in the
host population can either increase (fig. 3) or decrease (fig. 4) with increasing
preference. By contrast, increasing the total biting rate B always increases the
equilibrium infection level in the host in both the R-M and the preference models
(fig. 5). Thus, biting rate and host preference may have different effects on the
level of host infection.
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I have also considered a quadratic form for the consistent-preference biting-rate
function:

_ Px

Bix) = B [m] s (13)
_ _ Px

Bu(x) = B [1 T 1)x]' (14)

Here P denotes the preference for infected hosts: for P = 1, the model is identical
to the R-M model (random host choice); and there is increasing preference as P
increases above one. Note that B;(x) = B when x = 1 for any value of P. By an
analysis analogous to the above, it can be shown that the above results 1-6 apply
for this quadratic biting function, where P replaces c in equation (12).

In fact, these results appear to be quite general. Consider a generalized biting
function with the following properties:

0=B(x =8, Bi(0) = 0, Bi(1) = B,
d[Bix))/dx = 0, d*[Bix))dx* < 0.
For many classes of functions with these properties, the qualitative results 1-3,
5, and 6 hold (see the Appendix).

Switching-Behavior Model

I now consider host-choice behavior in which preference depends on the rela-
tive abundance of infected and uninfected hosts: uninfected hosts are preferred at
relatively low levels of infected hosts, whereas infected hosts are preferred at
relatively high levels. The host-infection level at which the preference switches is
called the switch point. A simple biting function that exhibits this behavior is

Bi(x) = BT“faj—_l (15)
Bux) = B — Bix) = (“TtL—%f—f— (16)

where a, ¢, and B are positive constants. The parameters a and ¢ must be chosen
so that B;(x) approaches one as x approaches one. The parameter a affects the
position of the switch point (fig. 64), and c affects both the switch point and the
rate at which the switch occurs (fig. 6B). Equations (15) and (16) have the same
drawback as equations (6) and (7): Bi(1) = B only when ¢ = « (but see eq. 24 for
an alternative). Again, this does not affect the qualitative behavior of the resulting
model except when an equilibrium point lies very near x = 1.
For the switching biting functions (eqs. 15, 16), the model becomes

dx _ (a + 1)kmBye™* _
dr 1 + ge™ < e an
dy _ BU—e ™)1 -y _
dt 1+ ge™ =

By - (18)
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Fic. 6.—The biting-rate function on infected hosts [8;(x), standardized to a total biting rate
B = 1] as a function of the infected proportion of the host population (x) for the switching-
behavior model. The biting function for random host choice is also given. A, Biting functions
for several different values of a, where ¢ = 10. Increasing a increases the switch point of
preference. B, Biting functions for several different values of ¢, where a = 100. Increasing ¢
decreases the switch point and increases the rate at which switching occurs.

As before, we can find the x null-cline [fi(x)] and y null-cline [f,(x)]:

rx(1 + ae™ )

S0 =y Bkm(a + 1)e™<* (19)
B(1 — e~ %)
—3 = . 20
Fx) = w(l + ae™) + B(1 — e™%) (20)
The following results then apply.
1. The null-clines are both nonnegative, increasing functions of x.
2. The x null-cline is convex (d*(f,)/dx* > 0).
3. The y null-cline is sigmoid when
Bix)>1 as x—1 21
and
¢ + 2B <2ap. . 22)

Note that condition (21) is required for any biologically meaningful biting func-
tion.

4. The point (£ = 0, y = 0) is always an equilibrium point, called the zero or
uninfected equilibrium.

5. Given results 1-4 above, analysis of the initial slopes of the null-clines gives
a condition for the existence of nonzero (infected) equilibrium point(s). If

R, = cB*km/pr(a + 1) > 1, (23)

then there is one (and only one) nonzero equilibrium point (fig. 74). If R, < 1,
there are either zero or two nonzero equilibrium points (figs. 7B,C).
6. Local stability analysis (Appendix) shows that the uninfected equilibrium
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Fic. 7.—Phase-plane plot of the infected proportions of the vector population (y, vertical
axis) and the host population (x, horizontal axis) for the switching-behavior model. The x null-
cline (x = 0, solid lines) and y null-cline (y = 0, dashed lines) are given; nonzero equilibrium
points are circled. Arrows, Vectors indicating the direction of change in the phase plane. A, A
single, stable, nonzero equilibrium point, to which all trajectories lead. Parameter values:
B =10, km/r = 1, ¢ = 10, p = 100, a = 1. B, No nonzero equilibrium exists, and all
trajectories lead to the stable , uninfected (zero) equilibrium. Parameter values: B = 10, km/r
=1,c = 10, p = 100, a = 100. C, The upper nonzero equilibrium is locally stable. The lower
nonzero equilibrium is unstable; trajectories below and to the left of this equilibrium lead to
the zero (uninfected) equilibrium, which is locally stable. Parameter values: B = 10, km/r
=1,¢ =10, pn = 10, a = 500.

is stable if and only if R, < 1. Thus, the uninfected equilibrium is stable either
when it is the only equilibrium point (fig. 7B) or when there are two nonzero equi-
libria.

7. Phase-plane analysis shows that when there is one nonzero equilibrium
point, it is globally stable (fig. 74). When there are two nonzero equilibria, the
upper equilibrium is locally stable and the lower equilibrium is unstable (fig. 7C).

Thus, there are several important differences between the switching-behavior
and the consistent-preference models. The conditions for instability of the unin-
fected equilibrium for the switching model (R?, eq. 23) are different from those for
the preference model (R, eq. 12); under equivalent situations, R, = R,/(a + 1).
Thus, as the location of the switch point increases (fig. 6), it is increasingly easier
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for the zero equilibrium to remain stable. Unlike the stability of the uninfected
equilibrium for the preference model, that for the switching model need not imply
that a stable infection cannot be maintained: multiple stable equilibria are now
possible.

The phase-plane analyses for the three-equilibria situation (1 zero equilibrium
+ 2 nonzero equilibria) show that, in a region of state space that is below the
lower, unstable nonzero equilibria, trajectories lead to the uninfected (stable)
equilibrium; above this region, trajectories lead to the higher, nonzero (stable)
equilibrium (fig. 7C). Thus, the qualitative outcome of the dynamics depends on
the initial levels of infection in the host and vector populations.

An alternative biting function that exhibits switching behavior is

P 1X _ P 2X
@ —Dx O x)+xl+(P2—1)x]' @4
In contrast to equation (15), equation (24) has the desirable property that B;(1) = B
for any realistic values of P, and P,. Simulations suggest that equation (24) leads
to qualitative model behavior similar to that for equation (15), but the model
incorporating equation (24) is more difficult to examine analytically.

Bi() = B[

Increasing-Host-Preference Model

Here 1 briefly consider a biting-rate function in which the degree of preference
increases with an increasing level of host infection:

_ Px?
Bi(X) =B [X(l - X) + m] (25)
_ _ Px?
BU(X) = B[l - X(l - X) m] . (26)

As with the consistent-preference model described by equations (13) and (14),
here for P = 1, the model is identical to the R-M model, and increasing P indicates
an increasing preference for infected hosts. For equations (25) and (26), however,
biting is essentially random (i.e., B;j(x) = Bx) for low levels of host infection,
but there is an increasing preference for infected hosts as host infection increases
(fig. 8A).

When this biting-rate function is incorporated into equations (1) and (2), the
following results are obtained. (1) The null-clines are both nonnegative, increasing
functions of x. (2) The uninfected equilibrium (£ = 0, § = 0) always exists, and it
is locally stable if and only if

R = kmB?/pur < 1. (27

Other aspects of the model’s behavior are difficult to examine analytically.
Simulation results show, however, that this model exhibits the same three qualita-
tive behaviors as the switching-behavior model, which are described by results 6
and 7 above and by figure 7. In particular, under some conditions for the increas-
ing-host-preference model, a locally stable, uninfected equilibrium occurs simul-
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Fic. 8.—The increasing-preference model. A, The biting-rate function on infected hosts
[Bi(x), standardized to a total biting rate B = 1] as a function of the infected proportion of the
host population (x) for several different values of preference, P. B, Phase-plane plot of the
infected proportions of the vector population (y, vertical axis) and host population (x,
horizontal axis). The x null-cline (x = 0, solid line) and y null-cline (y = 0, dashed line) are
given; the nonzero (infected) equilibrium points are circled. Arrows, Vectors indicating the
direction of change in the phase plane. In this case, the upper nonzero equilibrium point is
locally stable. The lower nonzero equilibrium point is unstable; trajectories below and to the
left of this point lead to the zero (uninfected) equilibrium point, which is locally stable.
Parameter values: P = 10, B = 10, km/r = 1, p = 110; hence, R < 1.

taneously with a locally stable, infected equilibrium, separated by an unstable,
infected equilibrium point (fig. 8B).

Note that the condition for stability of the uninfected equilibrium in this model
(eq. 27) is identical to that in the R-M model (eq. 5); this reflects the random host
choice in both models as x approaches zero. The most important result, however,
is that multiple stable equilibria can occur for both the increasing-preference and
the switching-behavior models. It appears that such behavior is the result of an
inflection point in the biting-rate function.
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DISCUSSION

Current empirical evidence for biting preference by mosquitoes with respect to
infection in their hosts is limited to a few laboratory experiments (see the in-
troduction). How such preferences might translate into differential biting rates on
infected and uninfected hosts under natural conditions is currently unknown.
Until such information is available, it seems unwise to consider models that are
more realistic (and less analytically tractable) than the simple extensions of the
Ross-Macdonald model developed here. Instead, I have focused on how aspects
of nonrandom host choice might affect qualitative aspects of the interaction of
human hosts and mosquito vectors in determining levels of malarial infection.

Because no relevant field data are currently available, the plausibility of the
different biting-rate functions remains unknown. The laboratory results cited in
the introduction suggest that preferential biting on infected hosts can occur at
least when the relative densities of infected and uninfected hosts are similar; this
is the basis for the consistent-preference model. Data relevant to the increasing-
preference and switching models are not available for biting preferences at low
relative densities of infected hosts. Note that Mahon and Gibbs (1982) showed
that mosquitoes are preferentially attracted to infected hosts even when biting
does not occur. Thus, mosquitoes need not directly assess the prevalence of
infection in the host population in order for preference to increase with preva-
lence, as required by the increasing-preference and switching models. For ex-
ample, an increasing-preference biting function could result from a preferential
attraction to infected hosts coupled with a ‘‘giving-up time,’’ whereby the mos-
quito would bite the next host encountered if it did not encounter an infected host
within a certain search period. In many insects, such a giving-up time requires
only that feeding behavior be influenced by hunger level, as detected, for ex-
ample, by stretch receptors in the gut (Dethier 1976). Such changes in preference
associated with giving-up times have been well documented for insects among
parasitoids (reviewed in Van Alphen and Vet 1986), herbivores (reviewed in
Rausher 1983), and generalist predators (see Murdoch 1969). No current data
suggest a preference for uninfected hosts when their numbers are few, as required
for the switching model. The switching model is included here for completeness
because such switching behavior is commonly observed in insects (Murdoch 1969;
Cornell and Pimentel 1978; Rausher 1978; Heinrich 1979; Prokopy et al. 1982).
The important point is that the increasing-preference and switching models lead to
qualitatively identical results.

I emphasize that the biting-rate functions explored in this paper are a phe-
nomenological description of the outcome of a complex feeding process involving
habitat choice, attraction, defensive behavior of the host, probing and blood
location, blood intake, and parasite transmission (Edman et al. 1985). I have
discussed these biting-rate functions in the context of behavioral choice by indi-
vidual mosquitoes, but other processes could generate such biting functions. For
example, functions like those of the increasing-preference or the switching model
might also occur as a result of nonrandom host distribution and vector aggregation
(Hassell 1978). A more complete model should include a mechanistic description
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of each stage of the feeding process (Ribeiro et al. 1985) incorporated into the
vector-host-parasite interactions.

A consistent preference for infected hosts does not alter the basic properties of
the system, relative to random host choice: there is only one stable equilibrium at
any time, and a single condition (eq. 5 or eq. 12) governs whether the stable
equilibrium is the zero (uninfected) or nonzero (infected) equilibrium. Increasing
the strength of the consistent preference does make it easier to maintain a stable
infection in the host population and increases the equilibrium level of infection in
the vector population. However, increasing the strength of the consistent prefer-
ence increases the equilibrium level of infection of the host population when the
equilibrium value is small but decreases the equilibrium level when the equilib-
rium value is larger. It appears that when levels of host infection are low,
preference for infected hosts results in a sufficient number of bites on infected
hosts to increase the infection level of vectors and allow a stable infected equilib-
rium. When levels of host infection are higher, however, preference results in
most of the bites occurring on infected hosts, and host infection spreads only
when infected vectors bite uninfected hosts.

Both the increasing-preference and the switching-behavior models, in which
preference for infected hosts increases as the levels of host infection increase, can
lead to qualitatively different system behaviors. If R, > 1 (R > 1 for the increas-
ing-preference model), the results obtained are similar to those for the consistent-
preference models (where R; > 1). For R, <1 (R < 1 for the increasing-preference
model), however, stable equilibria might occur simultaneously at both zero (unin-
fected) and nonzero (infected) levels. In this case, the state space is divided (by a
separatrix) into a lower region, in which trajectories lead to the uninfected state,
and an upper region, in which trajectories lead to a high and stable infection level.
This sort of dynamic behavior commonly occurs in models of predator-prey
systems in which the predator exhibits changes in preference or aggregation
behavior (e.g., Hassell 1978); this behavior also occurs in some other epidemio-
logical models (see Bailey 1982; Nasell 1985). In the present context, such behav-
ior would mean that random perturbations could lead to erratic changes between
high, persistent levels of host infection and the elimination of the infection.

Unlike the criteria for the Ross-Macdonald model, the criteria for determining
the existence and stability of infected equilibria in these nonrandom feeding
models can no longer be easily interpreted as the net reproductive rate of the
parasite. For the increasing-preference and the switching-behavior models, a
stable infection can be maintained in certain circumstances whether R (or, for
switching, R,) is greater than or less than one. Furthermore, for the consistent-
preference model, increasing values of R; often decrease the equilibrium levels of
host infection.

These results demonstrate that nonrandom host choice by mosquitoes with
respect to host infection could have important quantitative and qualitative ef-
fects on the dynamics of malarial infection. Further laboratory and field studies of
host choice that allow the estimation of the biting-rate functions g;(x) and B,(x)
are now needed to evaluate whether such effects are important in natural popu-
lations.
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SUMMARY

Several recent studies have demonstrated that blood-sucking mosquitoes may
preferentially choose hosts infected with malarial parasites. I developed and
analyzed a simple model for the dynamics of malarial transmission that incorpo-
rates such nonrandom feeding behavior by the mosquito. The dynamic variables
of interest are the infected proportions of the human host and mosquito vector
populations. I considered three types of nonrandom host choice: consistent pref-
erence for the infected host at all levels of host infection; increasing preference for
infected hosts as the infection level of the host increases; and a switching behavior
in which the mosquito switches preference from uninfected to infected hosts as
the level of host infection increases. The results were compared with previous
results from models with random host choice.

Both the random-choice and consistent-preference models predict either a
stable uninfected state or a stable persistence of the infection. For these models,
increasing consistent host preference makes it easier to maintain a stable infec-
tion, relative to the random-choice model. However, increasing the strength of
consistent host preference can either increase or decrease the equilibrium level
of infection in the host population. The increasing-preference and switching-
behavior models can produce model behavior in which there are two stable
equilibria: one at the uninfected state; the other at a high level of host infection. In
this case, the outcome of the malaria dynamics depends on the initial levels of
infection in the host and vector populations. These results show that nonrandom
host choice can have important quantitative and qualitative effects on the
epidemiology of malarial transmission, suggesting that further study of such
mosquito feeding behavior is warranted.
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APPENDIX

GENERAL FORMULATION

For convenience, let Bi(x) = B and B,(x) = B — B. Assume that B is a continuous,
nonnegative, increasing function of x on 0 = x < 1, with § = 0 at x = 0. Let B’ and B”
represent the first and second derivatives, respectively, of B with respect to x. Then the
model can be written in the form

dx/dt = kmy B — B) — rx, (A1)
dyldt = B(1 — y) — ny. (A2)
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The x null-cline, fx(x), and thé y null-cline, f;(x), can be written as
fix) =y = rxlkm(B — B) (A3)
Syx) = Bl(w + B) . (A4)

It can easily be shown that the x null-cline and the y null-cline are nonnegative increasing
functions of x if B’ > 0 for 0 = x =< 1. Note that f,(0) = 0 and £,(0) = 0. Similarly, one can
show that d?[f,(x)l/dx? = 0, when

B+ 2B+ e B =20, (43)

and that d?[f,(x))/dx* < 0, when
(n+ BB —2B)=0. (A6)

These results on the forms of the null-clines are important because they determine the
number of possible nonzero (infected) equilibrium points.

As an example, consider a generalized consistent-preference biting-rate function in
which B’ > 0, B” = 0 for 0 = x =< 1. In this case, equation (A6) clearly holds; and equation
(AS) can be shown to hold for many classes of function B. As a result, there is a maximum
of one infected equilibrium point, and its existence is determined by the initial slopes of the
two null-clines (Aron and May 1982).

LOCAL-STABILITY ANALYSIS

Local-stability analysis was examined by considering the Jacobian matrix for the general

model:
-F G
( . 1) : A7)
where
F =kmyB' +r, (A8)
G = kmB - B), (A9)
H=00-yp, (A10)
I=B8+pn. (A11)

Note that F > 0,I>0,G =0, and H = 0.
Then, the eigenvalues \ are given by

M2=W{ -+ F) = [+ F? - 4(F — HG)"%} . (A12)

By inspection and the nonnegative nature of I, F, G, and H, we observe that both
eigenvalues are negative if and only if

IF - HG>0. (A13)

One can now evaluate equation (A13) about each equilibrium point (£, ¥). As an exam-
ple, consider the uninfected equilibrium (# = 0, § = 0). Then, equation (A13) holds if and
only if

kmB B'(0)/ur < 1, (Al4)

where B'(0) is the slope of the biting-rate function at x = 0. Thus, the uninfected equilib-
rium is locally stable when condition (A14) holds, for each model. For example, for the
R-M model, B'(0) = B, and condition (A14) is equivalent to R < 1.
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